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A lower bound is derived for the boundary entropy s ¼ lng of a (1þ 1)-dimensional quantum

critical system with boundary under the conditions c � 1 on the bulk conformal central charge and �1 >

ðc� 1Þ=12 on the most relevant bulk scaling dimension. This is the first general restriction on the possible

values of g for bulk critical systems with c � 1.
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A (1þ 1)-dimensional quantum critical system is
described by a 2D conformal field theory (the bulk CFT).
A critical boundary is described by a conformally invariant
boundary condition on the bulk CFT. The combination—
a bulk CFT with a conformally invariant boundary
condition—is a boundary CFT [1]. Critical junctions in
critical quantum circuits are described by boundary CFTs.
For an N-wire junction, the bulk CFT is the N-fold product
of the CFTs describing the individual wires. The critical
junction is described by a conformal boundary condition
for the product CFT. In string theory, branes in spacetime
are described by conformal boundary conditions on the
string world sheet.

Affleck and Ludwig [2] defined a number g for each
boundary CFT—the universal noninteger ground state de-
generacy. The entropy localized in the boundary—the
boundary entropy—is lng. It is defined as the total entropy
of the system minus the bulk entropy �cL=6�, which is
proportional to the length L in the limit of large L. The
coefficient of L is determined by conformal invariance, in
terms of the inverse temperature � and the conformal
central charge c of the bulk CFT.

For c < 1, there is a complete classification of all pos-
sible boundary CFTs [3]. There is also a complete classi-
fication of conformal boundary conditions for the c ¼ 1
Gaussian model [4–6]. Until now, no limitations have been
known on the possible values that g can take for any other
c � 1 bulk systems.

For noncritical boundary conditions in a bulk CFT, the
boundary entropy s is defined in the same way by subtract-
ing the universal bulk entropy from the total entropy. Now
s depends on the temperature. Under a change of the
thermal length scale � the effective boundary condition
evolves along the boundary renormalization group flow
(the boundary RG flow). The bulk system, being scale

invariant, stays the same. A fixed point of the boundary
RG flow is a boundary CFT. At a fixed point s ¼ lng.
It is not obvious that s decreases with decreasing
temperature—that the second law of thermodynamics ap-
plies to the boundary—because of the subtraction of bulk
entropy in the definition of s. In fact, the boundary entropy
s does decrease along the boundary RG flow, so it de-
creases with temperature [7]. The result is actually
stronger: the boundary RG beta function is the gradient
of the function s on the space of boundary conditions. All
that is missing to control the asymptotic low temperature
behavior is a lower bound on s. Such a lower bound would
be an analogue of the third law of thermodynamics. Again,
the existence of a lower bound on s is nonobvious because
of the subtraction of the bulk entropy. Unsuccessful at-
tempts have been made to prove that s is bounded below
[8]. Without a lower bound, we cannot exclude the possi-
bility that smight decrease to�1 as the temperature drops
to zero.
Here we prove a lower bound g > gBðc;�1Þ that applies

to any c � 1 bulk system that has �1 > ðc� 1Þ=12, where
�1 is the most relevant bulk scaling dimension. The proof
assumes nothing about the boundary condition besides
criticality and unitarity. The bound does not imply a
boundary third law of thermodynamics, since it applies
only to critical boundary conditions. It does imply that a
noncritical boundary with entropy s below the bound can-
not flow to a critical boundary condition at zero tempera-
ture. If such a system exists, its boundary entropy must
necessarily decrease without limit towards s ¼ �1 at zero
temperature.
One of us has argued that critical quantum circuits are

natural physical systems for asymptotically large scale
quantum computers [9]. The quantum wires should be
critical in the bulk, so that the low-energy excitations are
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protected against microscopic fluctuations by universality
(the RG) and travel at uniform speed. The processing
elements are to be the circuit junctions. A junction can
be considered as a boundary condition on the CFT describ-
ing the independent wires entering it. A lower bound on
lng leads to an upper bound on the information capacity of
the junction, giving a general constraint on the design of
critical quantum circuits.

In string theory, g is the brane tension. The lower bound
on the brane tension might be useful once it is extended
to superconformal boundary CFTs and if the condition
�1 > ðc� 1Þ=12 can be relaxed.

The modular duality formula for a boundary CFT is [10]

tr expð��HbdryÞ ¼ hBj expð�2�Hbulk=�ÞjBi:
On the left is the thermodynamic partition function ZLð�Þ
at inverse temperature � for a finite segment of the system
of length L ¼ 1. The boundary conditions at the two ends
of the segment are the same. The Hamiltonian isHbdry. The

Hilbert space is called the boundary sector (in string
theory, the open string sector). In the Euclidean space-
time interpretation, ZLð�Þ is the partition function of a
finite 2D cylinder with length L and Euclidean time peri-
odic with period �. The right-hand side is obtained by re-
interpreting L as Euclidean time and � as the length of a
circle or, by scale invariance, Euclidean time 2�L=� and a
spatial circle of length 2�. The Hamiltonian for the circle
is Hbulk. The Hilbert space of the bulk system on the circle
is called the bulk sector (the closed string sector). The
boundary condition on each end of the cylinder is de-
scribed by a bulk state jBi. The modular duality formula
states that the partition function depends only on the 2D
geometry, so the two quantum mechanical interpretations
give the same result.

Conformal invariance implies that each side of the dual-
ity formula can be expressed as a sum over the characters
of the irreducible unitary representations of the Virasoro
algebra. For c > 1 (we consider the case c ¼ 1 separately
below) the duality formula becomes

�0ði�Þ þ
X
j

�hjði�Þ ¼ g2�0ði=�Þ þ
X
k

b2k��k=2ði=�Þ;

where the characters �hði�Þ are given by

�hði�Þ ¼ fhð�Þ
�ði�Þ ; fhð�Þ ¼

�
q��ð1� qÞ; h ¼ 0
q��þh; h > 0;

q ¼ e�2��; �ði�Þ ¼ q1=24
Y1
n¼1

ð1� qnÞ; � ¼ c� 1

24
:

The character �0ði�Þ is the contribution to the partition
function from the boundary sector representation that con-
tains the ground state, whose energy is �2�c=24. The
characters �hjði�Þ are the contributions from the represen-

tations with lowest energies 2�ðhj � c=24Þ. Unitarity and

uniqueness of the ground state imply all hj > 0. The

boundary scaling fields are in one-to-one correspondence
with the energy eigenstates in the boundary sector, via
radial quantization. A primary boundary field of scaling
dimension hj corresponds to the lowest energy state in the

representation labeled by j. The bulk scaling fields are in
one-to-one correspondence with the energy eigenstates in
the bulk sector. The terms on the right side of the duality
formula come from the closed sector representations
whose lowest energy states correspond to the spin-zero
primary scaling fields whose scaling dimensions are 0<
�1 � �2 � � � � . The numbers g and bk characterize and
completely determine the conformally invariant boundary
state jBi.
Rattazzi et al. [11] developed the linear functional

method for deriving bounds on the low-lying scaling di-
mensions of conformal field theories from crossing for-
mulas for correlation functions. Hellerman [12] showed
that the same method could be applied to the modular
duality formula for the bulk partition function of a 2D
CFT to obtain an upper bound on the dimension of the
lowest nontrivial primary field, and, with one of us, to
obtain bounds on state degeneracies [13]. Here we apply
the linear functional method to the modular duality for-
mula for boundary CFT to derive a lower bound on g.
We want a bound on g that depends only on properties of

the bulk system so it will apply to all possible critical
boundary conditions for a given bulk critical system. The
derivation should use only universal facts about the bound-
ary condition: the uniqueness of the boundary sector
ground state and the positivity of the scaling dimensions
hj, which follows from unitarity. Otherwise, nothing

should be assumed about the numbers hj or bk.

We start by multiplying both sides of the duality formula

by �ði�Þ ¼ ��1=2�ði=�Þ to get

f0 þ
X
j

fhj ¼ g2 ~f0 þ
X
k

b2k
~f�k;

(1)

where

~f� ¼
(
��1=2~q��þ�=2ð1� ~qÞ; � ¼ 0

��1=2~q��þ�=2; �> 0;
~q ¼ e�2�=�:

Then we apply a linear functional—a distribution �ð�Þ—
to both sides of Eq. (1), giving

ð�; f0Þ þ
X
j

ð�; fhjÞ ¼ g2ð�; ~f0Þ þ
X
k

b2kð�; ~f�k
Þ;

where ð�; FÞ ¼ R1
0 d��ð�ÞFð�Þ. If we can choose �ð�Þ

so that

ð�; fhÞ � 0; 8h > 0 (2)

ð�; ~f�Þ � 0; 8� � �1 (3)

then we get an inequality

g2ð�; ~f0Þ � ð�; f0Þ: (4)
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Next, using the identity

��1=2~q��þ�=2 ¼
Z 1

�1
dye���y2þ2�iy

ffiffiffiffiffiffiffiffiffiffi
��2�

p
(5)

we see that condition (2) implies ð�; ~f0Þ> 0 so we have a
lower bound on g,

g2 � g2B½�� ¼
ð�; f0Þ
ð�; ~f0Þ

: (6)

Maximizing over all distributions �ð�Þ satisfying condi-
tions (2) and (3), we obtain the optimal bound

g2 � g2Bðc;�1Þ ¼ max
�

g2B½��: (7)

It is not obvious that there exists any distribution �ð�Þ
satisfying both conditions (2) and (3). Using identity (5),
condition (3) requires

Z 1

�1
dyð�; f�þy2=2Þ cosð2�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � 2�

p Þ � 0: (8)

If �1 � 2� this is incompatible with condition (2). So the
linear functional method can give a bound only if �1 >
ðc� 1Þ=12.

The next step is to approximate the space of distributions
by distributions of the form ð�; FÞ ¼ DFð�Þ, where D is
an Nth order differential operator in �. A bound
g2Bðc;�1; N; �Þ is obtained by taking the maximum in
Eq. (7) over the differential operators of order N. The
bound can only improve as N increases. The partition
function is real analytic in � so we can expect the limit
N ! 1 to exhaust the space of linear functionals
for any choice of �, giving the optimal bound g2Bðc;�1Þ ¼
limN!1g2Bðc;�1; N; �Þ. We stop here at N ¼ 1, contenting
ourselves with finding any bound at all. Elsewhere we will
use the numerical techniques of Ref. [14] (semi-definite
programming) to approximate the optimal bound from the
linear functional method.

For N ¼ 1, we write the general first order operator

D ¼ a0 þ a1

�
� 1

2�

@

@�
þ �

�
:

Condition (2) is a0, a1 � 0. There is no bound if a1 ¼ 0,
and the bound does not change if we scaleD, so we might
as well set a1 ¼ 1. Condition (3) then becomes

a0 � A1ð�Þ ¼ �1 � 2�

2�2
� 1

4��
� �:

These conditions require A1ð�Þ � 0 which cannot be sat-
isfied for any value of � if �1 � 2� � 0, so to get a bound
we have to assume�1 > 2�, the necessity ofwhichwe have
already seen from the general analysis. The bound (7) is

g2B½�� ¼ A2ð�Þa0 � A3ð�Þ
a0 þ A4ð�Þ ; (9)

where

A2ð�Þ ¼ �1=2q��~q�
1� q

1� ~q
; A3ð�Þ ¼ q

1� q
;

A4ð�Þ ¼ �þ 1

4��
þ �

�2
þ 1

�2

~q

1� ~q
:

Since A2;3;4ð�Þ> 0, the highest bound is obtained when a0
takes its maximum value A1ð�Þ, so

g2Bðc;�1; 1; �Þ ¼ A2ð�ÞA1ð�Þ � A3ð�Þ
A1ð�Þ þ A4ð�Þ : (10)

The bound is empty unless A1ð�Þ � A3ð�Þ> 0, which is
stronger than A1ð�Þ � 0, so

A1ð�Þ � A3ð�Þ> 0 (11)

is the only condition we need to impose to get a bound.
At this point there is no reason to stick to one particular

value of �. The dependence on �will disappear asN ! 1
but for finite N we can sample a larger subspace of dis-
tributions if we vary�. The best bound that can be obtained
with a first-order D is

g2Bðc;�1; 1Þ ¼ max
�

g2Bðc;�1; 1; �Þ; (12)

where the maximum is taken over all � satisfying condi-
tion (11). There is a unique positive solution �1 of
A1ð�1Þ � A3ð�1Þ ¼ 0 and condition (11) is equivalent to
0<�<�1. So for �1 > 2� there is a lower bound

g2 � g2Bðc;�1; 1Þ
with

g2Bðc;�1; 1Þ ¼ max
0<�<�1

A2ð�ÞA1ð�Þ � A3ð�Þ
A1ð�Þ þ A4ð�Þ : (13)

There is no analytic expression for the N ¼ 1 bound, but it
can be calculated numerically for any given value of c and
�1. In general, the detailed form of the N ¼ 1 bound as a
function of c and �1 is not particularly interesting since it
is not even the optimal linear functional bound. At this
stage, we are only interested in the fact that there is any
lower bound on g.
For c ¼ 1, there are degenerate Virasoro repre-

sentations that do not occur for c > 1. Equation (1) holds

with the modification that, for integers n � 1, fn2 ¼
q��þn2ð1�q2nþ1Þ, ~f2n2 ¼ ��1=2~q��þn2ð1� ~q2nþ1Þ. As
before, we apply a first order differential operator with
appropriate positivity conditions to get a lower bound on
g that depends on �, then we maximize over �. We omit
the calculations. The result is shown in Fig. 1. Included for
comparison is the smallest value of g2 for the c ¼ 1
Gaussian model. Note that for the Gaussian model the
lowest bulk scaling dimension is �1 ¼ minðR2=2; 1=2R2Þ
so that �1 � 1=2. However, in the derivation of the bound,
we could as well have taken �1 to be the lowest dimension
that actually occurs in the boundary state and so contrib-
utes to the right-hand side of the duality formula. (This
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does not lead to a substantial generalization of our result
because in general we have no information on which bulk
states actually occur in the boundary state.) For example, if
we consider Gaussian model boundary conditions that are
invariant under one of theUð1Þ symmetries, then �1 in this
sense is R2=2. Thus we can continue the comparison past
the maximal value �1 ¼ 1=2 as done on Fig. 1. The N ¼ 1
bound is moderately good except when �1 � 0.

Several future directions are more or less obvious. We
can explore how much the bound can be improved by
numerically maximizing over differential operators of
degree N > 1. We can apply the linear functional method
to supersymmetric CFTs to get bounds on brane tensions
in superstring theory. We can try to find linear functional
bounds for specific bulk CFTs by exploiting knowledge
of the bulk spectrum. For example, the most interesting
bulk universality class for critical quantum circuits is the
Monster CFT [15], which has c ¼ 24 and �1 ¼ 4. It is
interesting because it has no relevant or marginal bulk
perturbations. Our N ¼ 1 lower bound is g2Bð24; 4; 1Þ ¼
0:0273. The known conformal boundary conditions [16]
have g2 ¼ 1. Numerical calculation of the N ¼ 83
bound, making use of the fact that all the bulk scaling
dimensions �k are even integers � 4, gives a bound g2 >
1–6:03� 10�19, strikingly close to 1.

The most pressing problem is to overcome the restriction
�1 > ðc� 1Þ=12. We expect—from consideration of the
effective low energy field theory of string theory in the
presence of branes—that there should be a lower bound on
g for all�1 which goes to zero as�1 goes to zero. We have
shown that in consequence of (8) our present method

cannot be extended straightforwardly. Some new ideas
will be needed. The linear functional method applied to
the boundary partition function is a practical compromise,
well short of the exact lower bound that would follow from
a complete solution of the conformal bootstrap for bound-
ary CFT. We do not know in what direction to improve
the linear functional method to get past the restriction
�1 > ðc� 1Þ=12.
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